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Abstract A stochastic algorithm is proposed for the global optimization of non-
convex functions subject to linear constraints. Our method follows the trajectory of
an appropriately defined Stochastic Differential Equation (SDE). The feasible set is
assumed to be comprised of linear equality constraints, and possibly box constraints.
Feasibility of the trajectory is achieved by projecting its dynamics onto the set defined
by the linear equality constraints. A barrier term is used for the purpose of forcing the
trajectory to stay within the box constraints. Using Laplace’s method we give a char-
acterization of a probability measure (�) that is defined on the set of global minima
of the problem. We then study the transition density associated with the projected
diffusion process and show that its weak limit is given by �. Numerical experiments
using standard test problems from the literature are reported. Our results suggest that
the method is robust and applicable to large-scale problems.

Keywords Stochastic global optimization · Simulated annealing · Stochastic
differential equations · Fokker–Planck equation · Laplace’s method · Projection
algorithms

1 Introduction

Applications of global optimization span nearly all of the spectrum of science and engi-
neering. Despite its importance, and the large amount of attention it has received, the
problem of computing the global optima of a function is still a very challenging area
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of numerical computing. In this paper, we will concentrate on the following linearly
constrained problem:

min
x

f (x)

s.t Ax = b (1.1)

x ≥ 0,

where x ∈ R
n, A ∈ R

m×n, b ∈ R
m. The objective function, f : R

n → R, is assumed
to be twice continuously differentiable. We propose a stochastic algorithm that will
compute the constrained global minimum of the problem above, i.e., we seek to find
an x∗ ∈ F+ that satisfies:

f (x∗) ≤ f (x) ∀x ∈ F+,

where F = {x ∈ R
n | Ax = b}, and F+ = R

n+ ∩ F . By R
n+ we denote the positive

orthant given by {x ∈ R
n | x ≥ 0}, and by R

n++ we denote the set {x ∈ R
n | x > 0}.

The part of the feasible set consisting of strictly positive feasible points is denoted by
F++ = R

n++ ∩ F . A well known method for obtaining a solution to an unconstrained
optimization problem is to consider the following Ordinary Differential Equation
(ODE):

dX(t) = −∇f (X(t))d t. (1.2)

By studying the behavior of X(t) for large t, it can be shown that X(t) will eventually
converge to a stationary point of the unconstrained problem. A review of, so called,
continuous-path methods can be found in [22]. More recently, application of this
method to large scale problems was considered by Li-Zhi et al. [15]. A deficiency of
using (1.2) to solve optimization problems is that it will get trapped in local minima.
In order to allow the trajectory to escape from local minima, it has been proposed by
various authors (e.g. [1, 4, 9, 10, 14]) to add a stochastic term that would allow the
trajectory to “climb” hills. One possible augmentation to (1.2) that would enable us
to escape from local minima is to add noise. One then considers the diffusion process:

dX(t) = −∇f (X(t))dt +√
2T(t)dB(t), (1.3)

where B(t) is the standard Brownian motion in R
n. It has been shown in [4, 9, 10],

under appropriate conditions on f , that if the annealing schedule is chosen as follows:

T(t) �
c

log(2 + t)
for some c ≥ c0, (1.4)

where c0 is a constant positive scalar (the exact value of c0 is problem dependent), un-
der these conditions, as t → ∞, the transition probability of X(t) converges (weakly)
to a probability measure �. The latter, has its support on the set of global minimizers.
A characterization of � was given by Hwang [13]. It was shown that � is the weak
limit of the following, so called, Gibbs density:

p(t, x) =
[

exp

{
− f (x)

T(t)

}][∫

Rn
exp

{
− f (x)

T(t)

}
dx
]−1

. (1.5)

Discussion of the conditions for the existence of �, can be found in [13]. A description
of � in terms of the Hessian of f can also be found in [13]. Extensions of these results
to constrained optimization problems appear in Sect. 5 of this paper.
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Theoretical work on the convergence of (1.3) to the global minimum of f , appeared
in [4, 9, 10]. In [9], the convergence of (1.3) was established for the special case of
f defined on a compact set. This assumption was lifted in [4], and in [10]. Analysis
of the method when only noisy measurements of the function, and its gradient are
available, was given in [8, 14]. Numerical experience with (1.3) was reported in [1, 2,
20]. From numerical experience reported in [20], it appears that the method compares
favorably with other Simulated Annealing type methods. To the authors’ knowledge,
there appears to be very little work on extending this useful method to the constrained
case. A notable exception is [20], where box constraints were also considered and the
convergence of the method was “heuristically justified” [20]. Box constraints were
also incorporated by Aluffi-Pentini et al. [1], using a penalty function. However, the
convergence of the algorithm for the constrained case was not discussed.

The contribution of this paper is to provide an implementable extension, and a
convergence analysis, of the method described above, to the constrained case. Our
numerical experiments suggest that the method is applicable to large-scale problems
(we solved problems of up to a thousand variables), and is also robust (in the sense
that the method can reliably compute the global minimum with a generic choice of
parameters). In Sect. 2, we propose a projected SDE that is similar to (1.3). The crucial
difference is that X(t) will always remain in the feasible region. In Sect. 3, we extend
the results of Hwang [13] to the constrained case and give a characterization of � in
terms of the Hessian of the Lagrangian associated with (1.1). The results of this Sec-
tion hold for generally constrained problems. In Sect. 4, we establish the convergence
of the proposed algorithm, using two different (and in some ways) complementary
arguments. The first argument is based on the fact that the solution process X(t),
remains in a compact set. In order to establish the convergence of the method, we
make use of some results of Geman et al. [9] concerning the special case of the pro-
cess remaining in a compact set. Our second argument, exploits the fact that SDEs
and Partial Differential Equations (PDEs), are closely intertwined. The link we shall
exploit in this work is provided by Kolmogorov’s forward equation. This PDE is also
known as the Fokker–Planck equation. Gidas [10] first proposed to study the asymp-
totic behavior of the Fokker–Planck equation in order to establish the convergence
of the method described above. In Sect. 4, we apply his technique of studying the
asymptotic behavior of the PDE associated with an unconstrained system of SDEs,
to the constrained case. Numerical integration of the projected SDE, details of our
implementation and numerical results are given in Sect. 5.

2 Projected SDE

For the sake of argument, suppose we did not have any linear constraints, but only
positivity constraints. We could then consider enforcing the feasibility of the iterates
by using a barrier function. According to the algorithmic framework adumbrated in
the introduction, we could obtain a solution to our (simplified) problem, by following
the trajectory of the following SDE:

dX(t) = −∇f (X(t))dt + µX(t)−1d t +√
2T(t)d B(t), (2.1)

where µ > 0 is the barrier parameter. By X−1, we will denote an n-dimensional vector
whose ith component is given by 1/Xi. Having used a barrier function to deal with
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the positivity constraints, we can now introduce the linear constraints into our SDE.
We propose to carry out this process by computing the minimum force we need add
to (2.1) so that X(t) will satisfy the constraints. In other words, we need to find a Z(t)
such that if X(t) is defined by:

dX(t) = −∇f (X(t))d t + µX(t)−1d t +√
2T(t)d B(t) + Z(t)d t,

then AX(t + s) = b, provided that AX(t) = b a.s.1 The advantage of dealing with
linear constraints is that Z(t) can be calculated in closed form. It is also independent
of the previous iterates. Z(t) is computed in the same manner as in gradient projection
methods (see, e.g. [17]). It must satisfy the following SDE:

−
t+s∫

t

Z(u)d u =
t+s∫

t

(AT(AAT)−1A)(−∇f (X(u)) + µX(u)−1)d u

+
t+s∫

t

√
2T(u)(AT(AAT)−1A)dB(u).

The projected SDE is therefore given by:

dX(t) = P[−∇f (X(t)) + µX(t)−1]dt +√
2T(t)PdB(t), (2.2)

where P = I − AT(AAT)−1A. Our motivation for defining projections in this manner
stems from similar ideas in stochastic approximation algorithms. The idea of projected
ODEs is carefully explained by Kushner, and Yin in [14]. The proposed algorithm
works in a similar manner to gradient projection algorithms. The key difference is the
addition of a barrier parameter for the positivity of the iterates, and a stochastic term
that helps the algorithm escape from local minima.

In this work, we propose to solve the global optimization problem in (1.1) by fixing
µ, and following the trajectory of (2.2) for a suitably defined function T(t). After
sufficiently enough time passes, we reduce µ, and repeat the process. The exact form
of T(t) will be identified in Sect. 4. It is identical to the unconstrained case (see (1.4)).
The reason for this is hardly surprising given the relationship of the proposed method
(2.2), and the unconstrained case (2.1). Similar properties are shared by the steep-
est descent, and gradient projection algorithms (see [16]). The rest of this section is
devoted to the study of the feasibility properties of the process defined by (2.2). In
particular, we show that the trajectory generated by (2.2) if started from a strictly
feasible point, then it will remain feasible. We note here that the choice of a barrier
term to enforce the positivity of the iterates was not (totally) arbitrary; but rather the
result of several numerical experiments. Several choices were considered during the
development of this work, including projection, and penalty functions. Despite first
impressions, the barrier term is competitive, if not better, than other methods we con-
sidered. It also provides a convenient, and powerful platform to study the theoretical
properties of the proposed method. Further comments on the numerical performance
of the proposed algorithm will be given in Sect. 5.

Proposition 2.1 Suppose that X(u) > 0 for u ∈ [t, s], and that AX(t) = b, then
AX(s) = b.

1 It will be clear from the context when a statement will hold almost surely. Henceforth, we drop the
a.s qualification from relevant statements.
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Proof Let g(x) = Ax. Then by Itô’s Lemma:

g(X(s)) − g(X(t)) =
∫ s

t
AP[−∇f (X(u)) + µX(u)−1]du +

∫ s

t

√
2T(u)APdB(u)

= 0. 
�
To show that the sample path stays strictly positive is slightly more complicated.

The idea is to show that if the process takes the value zero at some finite time, then
it will also explode in finite time. A stochastic process, is said to explode if it reaches
infinity in finite time. Proposition 2.2 shows that, under our assumptions, the process
defined by (2.2) does not explode. A more fastidious definition of the explosion of a
stochastic process, is the following [7]: Let {τm} denote the sequence of first exit times
of X(t) from balls of radius m about the origin. As m goes to infinity, we denote the
limit of {τm} by τ∞. If P(τ∞ < ∞) > 0, then the process is said to explode.

We use P to denote the probability measure induced by (2.2), as well as the pro-
jection matrix. The distinction will be clear from the context. Let B denote the Borel
σ -algebra on R

n. Let B ∈ B, we denote by P(x1, t, B, s; µ) the probability that X(s) ∈ B,
given that X(t) = x1. Weak convergence of probability measures will be indicated, as
usual, with the notation →w. We use Ix(A) to denote the indicator function on the a set
A, i.e. Ix(A) = 1 if x ∈ A, and zero otherwise. EP[·] will be used to denote expectation
with respect to the probability measure P. If A is a matrix then we denote its kth
column by Ak•. Let µ > 0 be fixed, we make the following assumptions throughout:

A1. There exists a probability density function p such that:

P(x1, t, B, s; µ) =
∫

B
p(x1, t, y, s; µ)dy.

A2.

exp

{

f (x) − µ

n∑

i=1

ln xi

}

→ ∞ as ‖x‖ → ∞, x > 0.

A3.

‖∇f (x) − µX−1‖ → ∞ as ‖x‖ → ∞, x > 0.

A4.

∑

ij

Pij

(
∂2f

∂xi∂xj
+ µx−2

i δij −
(

∂f
∂xi

− µx−1
i

)(
∂f
∂xj

− µx−1
j

))
< ∞

as ‖x‖ → ∞, x > 0,

where δij denotes the Kronecker delta.

Proposition 2.2 Let X(0) = y ∈ F++. Then there exists a c > 0, such that X(t) ≥ c, for
all finite t.

Proof The proof of this proposition is by contradiction. It is in two parts. In the first
part, we show that if the process reaches zero in finite time, then it will also explode.
The second part shows that, under our assumptions, the process defined by (2.2) can
not explode.
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Suppose that the kth element of the vector X(t), takes the value zero in finite time.
Let τ0 be the first time that this event occurs, i.e.:

τ0 = inf{t | X(t)k = 0}.
By assumption τ0 is finite, i.e. P{τ0 < ∞} > 0. We claim that, given any finite positive
δ, then X(t) will explode when t ≥ τ0 + δ. Indeed, suppose this was not the case. Then:

EP[X(τ0 + δ)k] = EP



−
τ0+δ∫

τ0

〈Pk•, ∇f (X(u))〉 du



+ EP



µ

τ0+δ∫

τ0

〈
Pk•, X(u)−1

〉
du



 ,

where we note that the Itô integral in (2.2) has zero expectation. Since X(u) is con-
tinuous, and u ∈ [τ0, τ0 + δ] is a compact set, it follows that the image generated by
X(u) is a compact set. The latter fact, together with the continuity of ∇f (x), imply that
there exists a finite, and positive constant K1, such that:

EP[X(τ0 + δ)k]

≥ −K1 + EP



µ

τ0+δ∫

τ0

〈
Pk•, X(u)−1

〉
du





= −K1 + EP



µ

τ0+δ∫

τ0

〈
Pk•, X(u)−1

〉
Iu(X(u) = 0)du





+EP



µ

τ0+δ∫

τ0

〈
Pk•, X(u)−1

〉
Iu(X(u) �= 0)du



 .

Since X(u)−1 is continuous, and bounded on {X(u) �= 0}; there must exist a finite, and
positive constant K2, such that:

EP[X(τ0 + δ)k] ≥ −K2 + EP



µ

τ0+δ∫

τ0

〈
Pk•, X(u)−1

〉
Iu(X(u) = 0)du



 ,

where P places positive mass to the event {X(u) = 0} occurring in finite time, as a
result we must have:

EP[X(τ0 + δ)k] = ∞.

Using the continuity of X we conclude that the preceding equation contradicts the
boundedness of X(τ + δ)k. Hence, the process will explode in finite time. We will next
show that, under our assumptions, the latter conclusion leads to a contradiction.

For any finite t we can scale time as follows: t = βs. Where β is positive, and finite.
The exact value of β will be given below, where it will also be made clear why we scale
time. Using the definition of scaled time, the system in (2.2) is augmented to:

dX(βs) = −βP∇w(X(βs); µ)ds +√
2T(βs)βP dB(s),

where w(x; µ) = f (x) − µ
∑

i ln xi.
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Let λ > 0, then by Itô’s Lemma:

d
[
exp (w(X(βs)) + λs)

]

=
[
λ − β∇w(X(βs))TP∇w(X(βs))

+βT(βs)
∑

ij

Pij

(
∂2w(X(βs))

∂xi∂xj
+ ∂w(X(βs))

∂xi

∂w(X(βs))
∂xj

)]
exp (w(X(βs)) + λs) ds

+√2T(βs)β exp (w(X(βs)) + λs) ∇w(X(βs))TPdB(s). (2.3)

Note that the annealing schedule is monotonically decreasing to zero. Hence for any
finite s, there exists a finite β0 such that for β ≥ β0 > 0, the following holds:

dT(I − 2T(βs)I)d ≥ 0 ∀d ∈ R
n, (2.4)

where I is the identity matrix.2 The inequality above is used to obtain the following
bound:

[
λ − β∇w(x)TP∇w(x) + βT(βs)

∑

ij

Pij

(
∂2w(x)

∂xi∂xj
+ ∂w(x)

∂xi

∂w(x)

∂xj

)]
exp (w(x))

=
[
λ − β∇w(x)TP(I − 2T(βs)I)P∇w(x)

+βT(βs)
∑

ij

Pij

(
∂2w(x)

∂xi∂xj
− ∂w(x)

∂xi

∂w(x)

∂xj

)]
exp (w(x))

≤ C(λ), (2.5)

where to get the last inequality we used the fact that for x large enough assumptions
A2–A4, ensure that C is positive and, finite.

Consider the following stopping times:

τr = inf{t | |X(t)| ≥ r}.
The explosion time of the process is defined by:

lim
r→∞ τr = τ∞.

By the first part of the proof, we have that τ∞ = τ0 + δ < ∞. Given any integer r, we
have:

E[exp (w(X(r ∧ (βs))) + λ(r ∧ (βs)))]

= E[exp (w(x) + λv)] +
r∧(βs)∫

v

d[exp (w(X(u)) + λu)]du

≤ exp (w(x) + λv) + C(λ)

r∧(βs)∫

v

eλudu,

2 Note that in [4], it was shown that the diffusion process associated with the “unconstrained” SDE
does not explode. It was also assumed that T(t) ≤ 1/2. Using this assumption (2.4), of course, holds
without any time rescaling. Given that c may be quite large (see (1.4)), we feel that rescaling time is
pertinent in this context.
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where we have used the fact that the Itô integral in (2.3) has zero expectation. Finally,

lim
s→∞ E[exp (w(X(r ∧ (βs))) + λ(r ∧ (βs)))]

≤ exp (w(x) + λv) + C(λ)

λ
(eλr − eλv) < ∞ ∀r ∈ (0, ∞). (2.6)

By assumption, τ∞ is finite, therefore for r large enough, we must have:

E[exp (w(X(r)) + λ(r))] = ∞.

Contradicting (2.6). Consequently, the diffusion defined by (2.2) remains strictly
positive. 
�

3 Constrained laplace’s method

The solution of (1.1) is, of course, a vector. Whereas, the solution of (2.2) is a stochastic
process. In preparation of our discussion concerning the convergence of the proposed
method, we will attempt to explain the relationship between the two solutions. This
is the aim of this Section.

It is well known that, under some regularity assumptions, the transition function of
(2.2), satisfies the following PDE:

∂p(t, x; µ)

∂t
=
∑

i

∂

∂xi

[ (
P(∇f (x) − µX−1)

)

i
p(t, x; µ)

]
+ T(t)

∑

ij

Pij
∂2p(t, x; µ)

∂xi∂xj
,

(3.1)

where p(x, t; µ) is the probability density function satisfying assumption A1. The PDE
in (3.1) is known as Kolmogorov’s forward equation, or as the Fokker–Planck equa-
tion. We will also assume that the solution process commenced from a strictly feasible
point. We therefore have the following initial condition:

lim
t→0

p(x0, 0, x, t; µ) = δ(x − x0), x0 ∈ F++.

In Sect. 4, we will show that the transition density, defined above, will eventually assign
positive mass on the global constrained minima of f . Therefore, the formal definition
of a probability measure supported on the set of constrained global minima is a fun-
damental building block for the convergence analysis of Sect. 4. The tools provided
by the Laplace method will prove indispensable in constructing this definition.

The results of this section hold for smooth nonlinearly constrained problems. We
therefore present our results in this more general setting. When we come to apply
these results in the next section, we will assume that g(x) = Ax − b.

Let H be the set of global optima:

H =
{

x | x = arg min
y

{f (y) | g(y) = 0}
}

.

Our aim is to introduce a probability measure �, such that �(x) > 0 if x ∈ H,
and zero otherwise. A natural way to define such a measure is by using Laplace’s
method[3, 13]. The latter, is a useful technique to study the asymptotic behavior of
integrals. It will be transparent from Proposition 3.4, that the Laplace method has
strong links with optimization. These links are purposefully exploited in Simulated
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Annealing type algorithms; as well as in the study of the properties of discrete optimi-
zation problems [18]. Hwang [13] was first to propose the applicability of the Laplace
method for defining a probability measure with the desired properties. In this section,
we extend the results of Hwang [13] to the constrained case.

Proposition 3.1 Consider the following problem:

F∗ = min f (x)

s.t gi(x) ≤ 0, i = 1, . . . , l.
(3.2)

Let S denote the feasible region of the problem above, and assume that it is nonempty,
and compact. Suppose that f , and g, are continuously differentiable. Then:

lim
ε↓0

−ε ln c(ε) = F∗. (3.3)

Where,

c(ε) �
∫

S
exp

{−f (x)

ε

}
d	

=
∫

Rn
exp

{−f (x)

ε

}
Ix(S)d	.

	 is any measure on (Rn, B).

Proof Let x̂ be any global minimizer of (3.2). x̂ exists, since S is nonempty, and com-
pact. Using the continuity of f , and the compactness of S; given any ε > 0, there exists
a β ∈ (0, 1), such that:

H(β) =
{

x ∈ S | β exp

{−f (̂x)

ε

}
≤ exp

{−f (x)

ε

}}
,

with 	(H(β)) > 0. Therefore, the following must hold:
∫

S
exp

{−f (x)

ε

}
d	

=
∫

S\H(β)

exp

{−f (x)

ε

}
d	 +

∫

H(β)

exp

{−f (x)

ε

}
d	

≥ β	(H(β)) exp

{−f (̂x)

ε

}
.

Hence:

β	(H(β)) exp

{−f (̂x)

ε

}
≤
∫

S
exp

{−f (x)

ε

}
d	 ≤ 	(S) exp

{−f (̂x)

ε

}
.

Consequently:

−ε ln(β	(H(β))) + f (̂x) ≥ −ε ln

(∫

S
exp

{−f (x)

ε

}
d	

)
≥ −ε ln 	(S) + f (̂x).

Finally, as ε ↓ 0 we have:

−ε ln

(∫

S
exp

{−f (x)

ε

}
d	

)
→ f (̂x). 
�
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Motivated by the result above, and by the results concerning the unconstrained
case from [13]. We consider the following Radon–Nikodym derivative as the starting
point for our definition:

dPε

d	
=

exp
{−f (x)

ε

}
Ix(S)

∫
exp

{−f (x)
ε

}
Ix(S)d	

, (3.4)

where 	 is some probability measure on (Rn, B). The rest of this section is devoted to
the study of Pε as ε approaches zero. The results presented here are extensions of the
unconstrained results from [13].

Proposition 3.2 The sequence {Pε} is tight.

Proof Let δ1 > 0 be any given arbitrary constant.

Pε(f (x) > δ1, x ∈ S)

=







∫

f (x)>δ1
x∈S

exp

{−f (x)

ε

}
d	










∫

x∈S

exp

{−f (x)

ε

}
d	





−1

≤ 	(f (x) > δ1, x ∈ S) exp

{
−δ1

ε

}



∫

x∈S

exp

{−f (x)

ε

}
d	





−1

≤



∫

x∈S

exp

{
δ1 − f (x)

ε

}
d	





−1

≤







∫

f (x)<δ1
x∈S

exp

{
δ1 − f (x)

ε

}
d	







−1

. (3.5)

Hence,

lim
ε↓0

Pε(f (x) > δ1, x ∈ S) = 0. (3.6)

Note that the set C = {x | f (x) ≤ δ1, x ∈ S}, is compact. From (3.6) it follows that
given any δ2 ∈ (0, 1), there exists a positive scalar ε0 > 0 such that:

Pε(C) ≥ 1 − δ2, ∀ε ≤ ε0. 
�
Corollary 3.3 {Pε} has a subsequence that weakly converges to �, and the latter has its
support in H.

Proof The first part follows from Proposition 3.2, and Prokhorov’s theorem. The sec-
ond part is a consequence of Proposition 3.1. 
�

Two cases are possible regarding the cardinality of the set of global minima. The
first is that it has a finite number of elements, and hence has zero measure. The second
case is when the problem assumes its global minimum on a set of positive measure.
As in the unconstrained case, it turns out that the former case is more interesting.
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Proposition 3.4 Assume that H, the set of constrained global minima of (3.2), consists
of a finite number of points:

H = {x1, x2, . . . , xm}.

Suppose that each xi ∈ H, satisfies the second order KKT conditions for local optimality:

∇f (xi) + νT
i ∇g(xi) = 0,

νijgj(xi) = 0, j = 1, . . . , l,

g(xi) ≤ 0, νi ≥ 0

dT



∇2f (xi) +
l∑

j=1

νij∇2g(xi)



 d > 0,

∀d ∈ M = {y | ∇g(xi)
Ty = 0, }, i = 1, . . . , m,

where νi denotes the Lagrange multiplier vector associated with the ith minimizer.
Assume that there exists an ε0 > 0 such that for each xi, the following holds:

g(xi ± ε1) ≤ 0,

νijgj(xi ± ε1) = 0, j = 1, . . . , l
(3.7)

for all ε ≤ ε0. Let dx denote the Lebesgue measure on (Rn, B), and suppose that there
exists a continuous function h such that h(xi) > 0, and d	

dx (·) = h(·). Then:

lim
ε↓0

Pε(xi) =
h(xi) det

[

∇2f (xi) +
l∑

j=1
νij∇gj(xi)

]−1/2

m∑

k=1
h(xk) det

[

∇2f (xk) +
l∑

j=1
νkj∇gj(xk)

]−1/2
� π(xi).

Proof Let Ci be an ε-closed neighborhood of the ith global minimizer. Where ε,
satisfies the assumption (3.7) above. Then:

Pε(Ci) =




∫

Ci

exp

{−f (x)

ε

}
d	









∫

x∈S

exp

{−f (x)

ε

}
d	





−1

.

For ε small enough, by Proposition 3.1 we must have:

Pε(Ci) ≈
[

exp

{−f (xi)

ε

}
h(xi)

]





m∑

j=1

∫

x∈Cj

exp

{−f (x)

ε

}
h(x)dx






−1

.

Without loss of generality, we can assume that f (x) = 0, if x ∈ H. By construction, all
the points in Ci are feasible. Consequently, we can Taylor expand the integrands in
the preceding expression, as follows:
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Pε(Ci) ≈
∫

Ci

exp






−(x − xi)
T [∇2f (xi) +∑

j
νij∇2g(xi)](x − xi)

2ε





h(xi)dx

×





m∑

k=1

∫

Ck

exp






−(x − xk)T [∇2f (xk) +∑

j
νkj∇2g(xk)](x − xk)

2ε





h(xk)dx






−1

=
∞∫

−∞
exp






−(x − xi)
T [∇2f (xi) +∑

j
νij∇2g(xi)](x − xi)

2ε





h(xi)dx

×





m∑

k=1

∞∫

−∞
exp






−(x − xk)T [∇2f (xk) +∑

j
νkj∇2g(xk)](x − xk)

2ε





h(xk)dx






−1

=
(2π)n/2h(xi) det

[

∇2f (xi) +∑

j
νij∇gj(xi)

]−1/2

m∑

k=1
(2π)n/2h(xk) det

[

∇2f (xk) +∑

j
νkj∇gj(xk)

]−1/2
.

Note that the region of integration, in the second equation above, can be extended
without loss of generality.3 The reason for this extension, is the fact that the Hessian
of the problem’s Lagrangian is positive-definite along all feasible directions. Hence,
the global minimizer of:

(x − xk)T [∇2f (xk) +
l∑

j

νkj∇2g(xk)](x − xk)

is at x = xk. This justifies the enlargement of the region of integration above, provided
that ε is small enough. 
�

It is possible that the global optimum is achieved on an infinite number of points.
The following result gives a description of the probability measure defined on such a
set.

Proposition 3.5 If 	(H) > 0 then Pε converges to P weakly, and P is uniformly dis-
tributed on H w.r.t 	.

Proof Identical to Proposition 2.2 in [13]. 
�
At the beginning of this section we committed to reconcile the solution of (1.1)

(a vector), and the solution of (2.2) (a stochastic process). The results of Propositions
3.4, and 3.5, provide the link between the two solution concepts. That is, we hope
that, for an appropriately chosen T(t); and for t large enough, the transition density
induced by (2.2) assigns positive measure only to the constrained global minimizers
of the penalized version of (1.1). As µ approaches zero the solution process must

3 This is a standard technique when applying the Laplace method (see, e.g. [3]).
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then oscillate between the global minima of the original problem. Establishing this
property of the transition function is what we propose to do in the next section.

4 Convergence of the method

The aim of this section is to establish the convergence of the proposed method. The
foundation for our analysis has been laid down in the last two sections. Related to our
analysis are also the works in [4, 9, 12]. The latter works establish the convergence of
(1.3) to unconstrained global minima. Out contribution is a convergence analysis for
the linearly constrained case. It was briefly mentioned in the introduction that two
complimentary arguments will be given. Both arguments establish the convergence
of the algorithm.

The first convergence proof is based on the fact that the solution process, X(t), will
remain in a compact set (see Propositions 2.1 and 2.2). We make use of this result
in order to show that the transition density of the diffusion converges to �. Where
� assigns positive measure only to the constrained global minima of (1.1). We first
establish a technical lemma that is needed in order to identify the functional form of
T(t). Moreover, this result is a prerequisite to the effective application of the results
of Geman et al. from [9].

Lemma 4.1 Let µ > 0 be fixed and let:

δt = inf
x,y

p(t, x, t + 1, y; µ),

T(t) = c
log(2 + t)

for some 0 < c < ∞,

where p satisfies the initial value problem in (3.1). Suppose that:

E



exp





1
4

t+1∫

t

‖P(∇f (X(s)) − µX(s)−1)‖2

T(s)
ds








 < ∞.

Then,

∞∑

s=1

δt+s = ∞ ∀t ≥ 0.

Proof The proof of this Lemma is similar to the proof of Lemma 1 in [9]. Modifica-
tions have been made in order to accommodate the constraints. The principal aim of
giving this proof is to make transparent the origin of the functional form of T(t). The
proof is given in Appendix. 
�

By �(t, B; µ) we denote the probability of x being in B at time t, under the Gibbs
density, i.e.:

�(t, B; µ) = 1
Z

∫
exp






−f (x) + µ
∑

i=1
ln(xi)

T(t)





Ix(F̂ ∩ B)dx,
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where F̂ denotes the closure of the set F++ = F ∩ R
n++; the normalizing constant Z

is given by:

Z =
∫

exp






−f (x) + µ
∑

i=1
ln(xi)

T(t)





Ix(F̂)dx.

For later use we define the density function of � as follows:

θ(t, x; µ) = 1
Z exp






−f (x) + µ
∑

i=1
ln(xi)

T(t)





Ix(F̂)dx. (4.1)

Note that the solution process (under our assumptions) satisfies:

P(x, t, B, s; µ) =
∫

B
p(x, t, y, s; µ)dy,

where p satisfies the initial value problem in (3.1).

Proposition 4.2 Suppose that �(t, ·; µ) →w �(t, ·; µ) as t → ∞. Then,

P(x0, 0, ·, t; µ) →w �(·; µ).

Proof Using Lemma 4.1 and Lemmas 1 and 2 from [9], the proof is identical to the
main theorem in [9]. 
�

We next provide a second convergence proof of the proposed method. The argu-
ment is based on the asymptotic analysis of the Fokker–Planck PDE (see (3.1)). This
type of analysis was initiated by Gidas [10–12]. The results given here are based on
the unconstrained proof given in [12]. The argument given here is slightly different
than the one given by Gidas [12]. For example, we do not impose any assumptions on
the eigenvalues of the generator associated with our SDE (see (4.3)). Having said this,
parts of our convergence proof are straightforward extensions to the unconstrained
derivation given in [12]. For completeness however, the whole argument is given.

Let,

w(x; µ) = f (x) − µ
∑

i

ln xi.

For clarity, we repeat the definition of the SDE we will analyze:

dX(t) = −P∇w(X(t))dt +√
2T(t)P dB(t). (4.2)

The (infinitesimal) generator of (4.2) is given by:

A =
∑

i

〈Pi•, ∇w〉 ∂

∂xi
− T(t)

∑

ij

Pij
∂2

∂xi∂xj
. (4.3)

Lemma 4.3 Let h, and g be any twice continuously differentiable functions that have
their support on F̂ . Moreover, suppose that g(x) is zero on the boundary of F̂ , i.e.:

g(x) = 0, ∀x ∈ ∂F̂ .



J Glob Optim (2006) 36:191–217 205

Then on the space (L2, θdx), the following holds:

〈g, Ah〉 = T(t)
∫

F̂

∑

ij

∂h
∂xi

Pij
∂g
∂xj

θ(t, x; µ)dx.

Proof Using (4.1), it can be shown by direct calculation that on F̂ the following holds:

Ah = −T(t)θ(t, x)−1
∑

ij

[
∂

∂xj

(
Pijθ(t, x)

∂h
∂xi

)]
.

Using the preceding equation, we obtain:

〈g, Ah〉 =
∫

g(x)




∑

i

〈Pi•, ∇w〉 ∂h
∂xi

− T(t)
∑

ij

Pij
∂2h
∂xixj



 θ(t, x; µ)dx

=
∫

Rn\F̂
g(x)(Ah)θ(t, x; µ)dx +

∫

F̂

g(x)(Ah)θ(t, x; µ)dx

= −T(t)
∫

F̂

g(x)
∑

ij

[
∂

∂xj

(
Pijθ(t, x)

∂h
∂xi

)]
dx.

Integrating by parts and using the fact that g is zero on the boundary of F̂ , we must
have:

〈g, Ah〉 = T(t)
∫

F+

∑

ij

∂h
∂xi

Pij
∂g
∂xj

θ(t, x; µ)dx,

as required. 
�
Proposition 4.4 Let,

θ(0, x; µ) = δ(x − x0), x0 ∈ F++.

In addition to our previous assumptions, suppose that there exists a constant c > 0 such
that:

dTPd ≥ cdTd ∀d ∈ R
n.

Then:

P(x0, 0, ·, t; µ) →w �(t, ·; µ).

Proof Let p denote the solution of the following initial value problem:

∂p(t, x; µ)

∂t
=
∑

i

∂

∂xi

[〈Pi•, ∇w〉 p(t, x; µ)
]+ T(t)

∑

ij

Pij
∂2p(t, x; µ)

∂xi∂xj

= −A∗p. (4.4)

With the initial condition:

lim
t↓0

p(t, x; µ) = δ(x − x0).
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By A∗ we denote the adjoint of A. Consider the following trial solution to our PDE:

p(t, x; µ) = θ(t, x; µ)η(t, x; µ), (4.5)

where η satisfies the conditions of Lemma 4.3, i.e. it is C2, has its support in F̂ , but
vanishes on the boundary of F̂ . Unless otherwise specified integrals for the rest of this
proof are taken over the entire R

n.
We now have:

∣
∣
∣
∣

∫
p(t, x; µ)dx −

∫
θ(t, x; µ)dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ √
θ(t, x; µ)

√
θ(t, x; µ)(η(t, x; µ) − 1)dx

∣
∣
∣
∣

≤
(∫

θ(t, x; µ)dx
)1/2 (∫

θ(t, x; µ)(η(t, x; µ) − 1)2dx
)1/2

. (4.6)

Let:

�(t; µ) �
∫

θ(t, x; µ)(η(t, x; µ) − 1)2dx.

The result would follow if �(t; µ) vanishes for t large enough. This is what we show
next. The plan is to obtain an expression for the derivative of �(t; µ). We then show
that, for large t, this derivative is negative. Consequently, {�(t; µ)} will eventually
meet its lower bound. We will show that this bound is given by zero.

We clarify that both p and θ are zero outside the compact set F̂ . p was shown to have
this property in Propositions 2.1 and 2.2; while θ has this property by construction.

By direct calculation we find:

dZ
dt

= dT(t)
dt

1
T(t)2

∫

F̂
w(x; µ) exp

{
−w(x; µ)

T(t)

}
dx,

∂θ(x, t; µ)

∂t
= θ(t, x; µ)

T(t)2

dT(t)
dt

(
w(x; µ) −

∫

F̂
w(x; µ)θ(t, x; µ)dx

)
.

Let,

W(t; µ) �
∫

w(x; µ)θ(t, x; µ)dx.

Using (4.4), and the definition in (4.5) we have:

−A∗p = ∂p(t, x; µ)

∂t
= θ(t, x; µ)

∂η(t, x; µ)

∂t
+ ∂θ(t, x; µ)

∂t
η(t, x; µ)

= θ(t, x; µ)
∂η(t, x; µ)

∂t
+ θ(t, x; µ)

T(t)2

dT(t)
dt

(w(x; µ)

−W(t; µ))η(t, x; µ).

By direct calculation it can be verified that:

θ(t, x; µ)−1A∗p = Aη,

it follows from (4.5) that:

�(t, µ) =
∫

η(t, x; µ)2θ(t, x; µ)dx − 1.
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We now use the relationships above to obtain the following expression for the deriv-
ative of �(t; µ).

1
2

∂�(t, µ)

∂t
=
∫

η(t, x; µ)θ(t, x; µ)
∂η(t, x; µ)

∂t
dx + 1

2

∫
η(t, x; µ)2 ∂θ(t, x; µ)

∂t
dx

= −
∫

η(t, x; µ)Aη(t, x; µ)θ(t, x, µ)dx

− 1
2T(t)2

dT(t)
dt

∫
η(t, x; µ)2θ(t, x; µ)(w(x; µ) − W(t; µ))dx

= −
∫

η(t, x; µ)Aη(t, x; µ)θ(t, x, µ)dx

− 1
2T(t)2

dT(t)
dt

∫
θ(t, x; µ)(w(x; µ) − W(t; µ))(η(t, x; µ) − 1)2dx

− 1
T(t)2

dT(t)
dt

∫
θ(t, x; µ)(w(x; µ) − W(t; µ))(η(t, x; µ) − 1

2 )dx. (4.7)

Without loss of generality we may assume that, for µ fixed, the following hold:

0 = min

{

f (x) − µ
∑

i

ln xi | Ax = b

}

,

U = max

{

f (x) − µ
∑

i

ln xi | Ax = b

}

.

The following bound can be derived for the first term on the r.h.s. of (4.7):

∫
η(t, x; µ)Aη(t, x; µ)θ(t, x; µ)dx

= T(t)
∫

F̂

∑

ij

∂η(t, x; µ)

∂xi
Pij

∂η(t, x; µ)

∂xj
θ(t, x; µ)dx (4.8a)

≥ c1T(t)
∫

F̂

∑

i

(
∂η(t, x; µ)

∂xi

)2

θ(t, x; µ)dx (4.8b)

≥ c2T(t)
∫

F̂

η(t, x; µ)2θ(t, x; µ)dx (4.8c)

≥ c2T(t)
∫

F̂

η(t, x; µ)2θ(t, x; µ)dx − c2T(t)

= c2T(t)�(t; µ),

where (4.8a) follows from Lemma 4.3. The relation in (4.8b) follows from our assump-
tion that the projection matrix is bounded away from zero. Finally (4.8c) follows from
the application of Poincare’s inequality, on the space (L2, θdx) (see, e.g. [16]). From
Poincare’s inequality we have that c2 in (4.8c) depends only in the region of integra-
tion, consequently we conclude that c2 is a positive, and finite constant.
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The second term in (4.7) can be bound as follows:
∫

θ(t, x; µ)(w(x; µ) − W(t; µ))(η(t, x; µ) − 1)2dx

≤ U
∫

θ(t, x; µ)(η(t, x; µ) − 1)2dx

= U�(t; µ).

Finally, for the third term in (4.7) we have the following bound:
∫

θ(t, x; µ)(w(x; µ) − W(t; µ))(η(t, x; µ) − 1
2
)dx

≤ U
∫

θ(t, x; µ)|η(t, x; µ) − 1
2
|dx

≤ U
∫

θ(t, x; µ)|η(t, x; µ) − 1|dx + U
2

≤ U

√∫
θ(t, x; µ)(η(t, x; µ) − 1)2dx + U

2

= U
√

�(t; µ) + U
2

,

where to get the last inequality, we used the Schwartz inequality on the space (L2, θdx).
By collecting the last three bounds we complete the first step of the proof:

1
2

∂�(t; µ)

∂t
≤ −c2T(t)�(t; µ) − U

2T(t)2 �(t; µ)
dT(t)

dt
− U

T(t)2

dT(t)
dt

[√
�(t; µ) + 1

2

]
,

where to obtain the inequality above, we used the fact that T(t) is monotonically
decreasing, hence it has a negative gradient. �(t; µ) is nonnegative, and is additionally
defined as the integral of continuous functions over a compact space. It follows that
is bounded above by some positive constant. For t large enough, and if T(t) is chosen
as the logarithmic function of Proposition 4.2, then it can easily be verified that:

lim
t→∞

1
T(t)2

dT(t)
dt

= 0.

Hence, there exists a Tc such that for t ≥ Tc:

∂�(t; µ)

∂t
≤ 0.

Therefore, for t large enough {�(t; µ)} is a monotonically decreasing sequence that is
bounded below. Hence it will eventually reach its lower bound. By construction, the
lower bound of �(t; µ) is 0. If there exists a t0, such that: ∂�(t;µ)

∂t = 0, for t ≥ t0. Then:

�(t; µ) ≤ − U
2c2T(t)3 �(t; µ)

dT(t)
dt

− U
c2T(t)3

dT(t)
dt

(√
�(t; µ) + 1

2

)
∀t ≥ t0.

The r.h.s. in the preceding equation goes to zero, and since �(t; µ) is nonnegative,
�(t; µ) must also go to zero. By (4.6) the result follows. 
�

Occasionally, in our implementation, we set T(t) to zero and greedily follow the
steepest descent trajectory. The next result, shows that this strategy will lead to a local
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minimum. Even though we are after global minima, we found that this heuristic works
well in practice. It is therefore prudent to verify its validity.

Proposition 4.5 Let x0 be a given strictly feasible initial point. Suppose that,
{

x ∈ R
n | f (x) − µ

∑

i

ln xi ≤ f (x0) − µ
∑

i

ln x0
i

}

is bounded. Let µ > 0 be fixed. Consider the trajectory Y(t; µ), generated by the ODE:

dY(t; µ) = P[−∇f (Y(t; µ)) + µY(t; µ)−1]dt. (4.9)

There exists a T such that for t ≥ T, Y(t; µ) will satisfy the perturbed KKT conditions
of (1.1). Moreover, as µ → 0, Y(t; µ) will eventually satisfy the local conditions for
optimality of the original problem.

Proof Let µ be fixed. We first note that, AY(t; µ) = b. Then,

d

[

f (Y(t; µ)) − µ
∑

i

ln Yi(t; µ)

]

= [∇f (Y(t; µ)) − µY(t; µ)−1]dY(t; µ).

Hence, for t > s:
[

f (Y(t; µ)) − µ
∑

i

ln Yi(t; µ)

]

−
[

f (Y(s; µ)) − µ
∑

i

ln Yi(s; µ)

]

= −
t∫

s

[∇f (Y(u; µ)) − µY(u; µ)−1]TP[∇f (Y(u; µ)) − µY(u; µ)−1]du

≤ 0.

It follows from Theorem 3.4 in [21], that there exists a T such that, for t ≥ T, Y(t; µ)

will be a stationary point of (4.9). Hence,

P[−∇f (Y(t; µ)) + µY(t; µ)−1] = 0 ∀t ≥ T.

Let, λ(x) = −(AAT)−1A(∇f (x; µ) + µX−1). Then, it can easily be seen that (Y(t; µ),
λ(Y(t; µ)) is a perturbed KKT pair associated with (1.1):

−∇f (Y(t; µ)) + µY(t; µ)−1 + ATλ(Y(t; µ)) = 0

AY(t; µ) = b.

Taking µ → 0, the result follows. 
�
All the results we have presented so far, apart from the proposition above, are

based on the assumption that µ is some fixed positive constant. We end this section
with a remark to justify our strategy of reducing µ, after sufficiently long time.

Assume that we have a finite number of global minima. Let (xi, λi), denote the
KKT point associated with the ith global minimum. Then the solution process will
have a transition distribution given by:

θ(xi; µ) = h(xi) det
[∇2f (xi) + µX−2

i
]−1/2

m∑

k=1
h(xk) det

[
∇2f (xk) + µX−2

k

]−1/2
.
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Since, h(xi) det
[∇2f (xi) + µX−2

i
]−1/2

> 0 for all i, then by continuity we have:

lim
µ↓0

θ(xi; µ) = h(xi) det
[∇2f (xi)

]−1/2

m∑

k=1
h(xk) det

[∇2f (xk)
]−1/2

and convergence is uniform. This result, justifies our method of keeping µ fixed, fol-
lowing the trajectory of the projected SDE; reducing µ and repeating the process.
Even though it seems a very cumbersome method, since every “inner” iteration is a
global optimization process, in our implementation we found that only a few outer
iterations are required.

5 Numerical experiments

The algorithm described in the previous sections has been implemented in C. The
aim of this Section is to give the details of the implementation, as well as present our
numerical experience of using the proposed method.

From similar studies in the unconstrained case (e.g. [1, 20]), we know that a defi-
ciency of stochastic methods (of the type proposed in this paper) is that they require
a large number of function evaluations. The reason for this shortcoming, is that the
annealing schedule has to be sufficiently slow in order to allow the trajectory to escape
from local minima. Therefore, whilst there are many sophisticated methods for the
numerical solution of SDEs, we decided to use the cheaper stochastic Euler method.
A further reason for not using higher order methods, such as Milstein’s method, is
that these methods require derivatives of the annealing schedule. While the functional
form of this function has been identified, its direct use will slow down the algorithm
too much. We will return to the topic of the annealing schedule later in this section.

The stochastic Euler method is a generalization of the well known Euler method
for ODEs to the stochastic case. The main iteration is given by:

X(0) = y ∈ F++,

X(t + 1) = X(t) + P[−∇f (X(t)) + µX(t)−1]�t +√
2T(t)�tPu,

where �t is the discritized step length parameter, and u is a standard Gaussian vector,
i.e. u ∼ N(0, I).

The algorithm starts by dividing the discritized time into k periods. Following a sin-
gle trajectory will be too inefficient. Therefore, starting from a single strictly feasible
point the algorithm generates m different trajectories. After a single period elapses,
we remove the worst performing trajectory. Since, all trajectories generate feasible
points, we can assess the quality of the trajectory by the best objective function value
achieved on the trajectory. We then randomly select one of the remaining trajecto-
ries, and duplicate it. At this stage we reduce the noise coefficient of the duplicated
trajectory.

When all the periods have been completed, in the manner described above, we
count this event as one iteration. After each iteration is completed we reduce the
barrier parameter. In our implementation we started with the barrier parameter at
µ = 0.1, and reduced it my 0.75 after the completion of each iteration. We have found
that this simple rule regarding the update of the barrier parameter to be effective.
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Then the same process is repeated with all the trajectories starting from the best point
found so far. If the current incumbent solution vector remained the same for more
than l iterations (l > 4, in our implementation) then we reset the noise to its initial
value. The algorithm terminates when the noise term is smaller than a predefined
value (0.1e−4) or when after five successive resets of the noise term, no improvement
could be made.

There do not seem to exist many test problems with general nonlinear objective
functions and linear constraints. We therefore developed a simple problem generator
for this class of problems using a test function suggested by Pintér [20]. The problems
in Table 1, prefixed with PNT, were generated as follows: given n (the number of
variables), and m (the number of constraints) we generated a dense random matrix
using a uniform random number generator. In the same manner, we generated the
right hand side of the linear constraints. We then found two solutions of the linear
system, one serves as the feasible starting point, and the other as the optimum point.
In problems postfixed with B, we also imposed a non negativity condition on the two
points. Using this simple procedure we generated the constraints of our test problems.
The objective function is the one suggested by Pintér [20]:

f (x) = s
n∑

i=1

(xi − x∗
i )

2 + sin2(g1P1(x)) + sin2(g2P2(x)),

P1(x) =
n∑

i=1

(xi − x∗
i )

2 +
n∑

i=1

(xi − x∗
i ),

P2(x) =
n∑

i=1

(xi − x∗
i ),

Table 1 Problem statistics Name No. of variables No. of constraints Barrier

4.3.1[5] 6 6 Yes
4.3.2[5] 9 6 Yes
4.3.3v 6 6 Yes
PNT1 3 2 No
PNT2 20 15 No
PNT3 60 40 No
PNT4 100 60 No
PNT5 200 160 No
PNT6 300 220 No
PNT7 500 220 No
PNT8 750 500 No
PNT9 1000 900 No

PNT1B 3 2 Yes
PNT2B 20 15 Yes
PNT3B 60 40 Yes
PNT4B 100 60 Yes
PNT5B 200 160 Yes
PNT6B 300 220 Yes
PNT7B 500 220 Yes
PNT8B 750 500 Yes
PNT9B 1000 900 Yes



212 J Glob Optim (2006) 36:191–217

where x∗ is the optimum point, s = 0.025n, and g1 = g2 = 1. The advantage of using
the preceding equation as a test function is that it has many local minima (see, Fig. 1
for a random instance of this function), but crucially its global minimum is known.
We believe that the test problems generated with the procedure described above will
serve as a good initial indication of the usefulness of the proposed method. Numerical
experience from a real-world financial application appears in [19].

Table 1 summarizes the properties of the test problems. The first three problems
were taken from [5]; the dimensionality column of these latter problems includes the
slack variables we added in order to transform the linear inequalities into equalities.
The last column of Table 1 indicates whether the problem required the use of a barrier
function or not.

In Table 2 we give the parameters we used when solving the problems. In light of our
previous discussion, the first three columns are self explanatory. The fourth column
refers to the length of the period. The final column refers to the update schedule for
the annealing parameter. T(0) is the initial value; the number in parenthesis indicates
by how much we decreased this parameter at every iteration. We note that similar
parameters were used to solve all problems. This is an indication that the proposed
method is robust.

All the computational experiments where run on a Linux machine, with 3 GHz
CPU and one gigabyte of RAM. It is evident from Table 3 that the algorithm is appli-
cable to large-scale problems. The problems were solved to a tolerance of 0.1e − 4;
additional accuracy can be achieved at the expense of more function evaluations.

Fig. 1 A one dimensional
example of the test function
used
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Table 2 Solution parameters Name No. of No. of Length T(0),(dec)
trajectories periods

4.3.1[5] 4 4 10000 30, (0.7)

4.3.2[5] 4 4 10000 15, (0.65)

4.3.3[5] 4 4 20000 15, (0.7)

PNT1-PNT9 2 2 20000 10, (0.7)

PNT1B-PNT9B 2 2 20000 10, (0.7)



J Glob Optim (2006) 36:191–217 213

Table 3 Solution statistics,
average of ten runs Name No. of grad. eval.×103 CPU time (secs) No. of iterations

4.3.1[5] 749 21 20
4.3.2[5] 225 32 11
4.3.3[5] 526 11 11
PNT1 960 2 2
PNT2 1120 18 14
PNT3 1120 77 14
PNT4 1360 208 17
PNT5 1280 629 16
PNT6 1360 1424 17
PNT7 1520 4106 19
PNT8 1520 8853 19
PNT9 1360 13865 17
PNT1B 640 1 2
PNT2B 1040 16 13
PNT3B 1200 83 15
PNT4B 1280 195 16
PNT5B 1280 629 16
PNT6B 1360 1425 17
PNT7B 1520 4137 19
PNT8B 1520 8846 19
PNT9B 1440 14703 18

Note that the gradient evaluations are not increasing in a substantial way from lower-
dimensional problems to the larger problems. Finally, the results when the barrier
term is used are comparable, if not identical to the case of when we only have linear
equality constraints. We note however, that special safeguards are needed to ensure
that the vector does not take zero or negative values. Proposition 2.2 applies to the
continuous case, to be able to use this result �t will need to be prohibitively small.

We have also experimented with the idea of keeping µ constant. In our experi-
ments we found that in order to make this strategy work we had to eventually reduce
the barrier parameter. This was especially the case when the solution was not on the
boundary. A large (say 0.5) barrier parameter, interferes with the annealing schedule
in a nontrivial manner. Consequently, one has to update the noise term even slower;
this delays the algorithm.

6 Conclusions

We proposed an algorithm for the global optimization of linearly constrained prob-
lems. The method ‘follows’ the trajectory of an SDE. The algorithm proceeds like a
projected gradient method. The main differences from the latter class of algorithms is
the inclusion of a Brownian motion term (to help the trajectory escape from local min-
ima), and a barrier term (to enforce the positivity of the iterates). The properties of the
SDE were analyzed, and the algorithm was shown to converge (in a stochastic sense)
to the global minimum. Two different proofs were given to establish the convergence
of the method. The first was based on a compacticity argument, where we took advan-
tage of the results from Geman et al. [9] in order to establish similar type of results for
the constrained case. The second argument exploited the link between SDEs and the
Fokker–Planck equation; based on results from Gidas [10] we studied the asymptotic
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behavior of the algorithm. Finally, details of our implementation of the algorithm and
results from our numerical experiments were given. The algorithm works by numeri-
cally integrating the relevant SDE using the stochastic Euler method. Our numerical
experiments are encouraging and suggest that the the algorithm is robust and reliable.
Motivated by our results we plan to extend the algorithm so that it can be applied to
generally nonlinearly constrained problems.
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Appendix

We now give the proof of Proposition 4.1. Consider the following system of SDEs:

dX(s) = −P∇w(X(s))ds +√
2T(s)P dB(s), (6.1)

X(t) = x s ∈ [t, t + 1],
dX(s) = √

2T(s)P dB(s), (6.2)

X(t) = x s ∈ [t, t + 1],
where w(x) = f (x) − µ

∑
i ln xi. Let R, and Q, be the transition probability measures,

associated with (6.1), and (6.2), respectively.
Let us assume, for the sake of argument, that there exists a function θ(t, x), that

satisfies Novikov’s condition:

E



exp





1
2

t+1∫

t

‖θ(s, x)‖2ds








 < ∞.

Furthermore, suppose that θ(t, x), satisfies the following equation:
√

2T(t)Pθ(t, x) = −P∇w(x). (6.3)

Then, by Girsanov’s theorem, the Radon–Nikodym derivative of Q w.r.t R, is given
by:

dQ
dR

X(·) = exp





−

t+1∫

t

〈θ(s, X(s))dB(s)〉 − 1
2

t+1∫

t

‖θ(s, X(s))‖2ds





. (6.4)

If we take:

θ(t, x) � −P∇w(x)√
2T(t)

.

Then, by the conditions of the lemma, both Novikov’s condition and Eq. (6.3) will be
satisfied (note that P2 = P). Whence, Eq. (6.4) becomes:

dQ
dR

X(·) = exp






t+1∫

t

〈∇w(X(s))√
2T(s)

, P dB(s)
〉
−

t+1∫

t

‖P∇w(X(s))‖2

4T(s)
ds





. (6.5)
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From (6.1) we have:

P dB(s) = dX(s) + P∇w(X(s))ds√
2T(s)

.

Consequently (6.5) can be written as follows:

dQ
dR

X(·) = exp






t+1∫

t

〈∇w(X(s))
2T(s)

, dX(s)
〉
+

t+1∫

t

〈∇w(X(s))
4T(s)

, P∇w(X(s))
〉

ds





.

By Propositions 2.1 and 2.2, X(s) (with s in [t, t + 1]) will remain in a compact set.
Using the fact that P is positive semidefinite, with 1 as the largest possible eigenvalue,
the following bound can be derived:

t+1∫

t

〈∇w(X(s))
4T(s)

, P∇w(X(s))
〉

ds

≤
t+1∫

t

〈∇w(X(s))
4T(s)

, ∇w(X(s))
〉

ds

≤ c1

T(t + 1)
,

where to derive the last inequality we used the monotonicity property of T(t). We
shall be using this property of T(t) below as well.

By Itô’s lemma, under R:

d[w(X(s))] = 〈∇w(X(s)), dX(s)〉 +


T(s)
∑

ij

Pij
∂2w(X(s))

∂xi∂xj



 ds.

Therefore,

〈∇w(X(s)), dX(s)〉
2T(s)

= 1
2T(s)

d[w(X(s))] − 1
2



T(s)
∑

ij

Pij
∂2w(X(s))

∂xi∂xj



 ds. (6.6)

Integrating by parts, we can calculate the following bound for the first term on the
right-hand side of (6.6):

∣
∣
∣
∣
∣
∣

t+1∫

t

1
2T(s)

d[w(X(s))]
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

1
2T(s)

w(X(s))
∣
∣
∣
t+1

t
−

t+1∫

t

w(X(s))d
[

1
2T(s)

]
∣
∣
∣
∣
∣
∣
≤ c2

T(t + 1)
,

where we used the fact that X(s) remains in a compact set. Using the same argument,
a bound for the second term in (6.6) can be found:

∣
∣
∣
∣
∣
∣

1
2



T(s)
∑

ij

Pij

t+1∫

t

∂2w(X(s))
∂xi∂xj

ds





∣
∣
∣
∣
∣
∣
≤ c3.



216 J Glob Optim (2006) 36:191–217

Therefore, there must exist a constant c4, such that:

dQ
dR

X(·) ≤ exp

{
c4

T(t + 1)

}
.

Under (6.2), X(t + 1) is normally distributed. Indeed, its mean and covariance matrix
are given by:

E[(X(t + 1)] = E[X(t)] + E

[∫ t+1

t

〈√
2T(s), P dB(s)

〉
]

= x.

Cov(Xi(t + 1)Xj(t + 1))

= E[Xi(t + 1), Xj(t + 1)] − xixj

= E
[(

xi + ∫ t+1
t

√
2T(s)

∑
k Pik dBk(s)

) (
xj + ∫ t+1

t

√
2T(s)

∑
k Pjk dBk(s)

)]
− xixj

=
∫ t+1

t
E

[

2T(s)
∑

k

Pik Pjk

]

ds

= 2
∫ t+1

t
T(s)

∑

k

Pik Pjkds.

By 	 we denote the covariance matrix, whose i, jth entry is given by the preceding
equation. Let ε be an arbitrary positive constant, and let z ∈ F++. Then:

R[|X(t + 1) − Z| ≤ ε] ≥ exp

{
− c4

T(t + 1)

} ∫

|u−z|≤ε

exp
(−1/2(u − x)T	−1(u − x)

)

(2π)n/2(det 	)1/2
du.

It is easy to see that there exists a c5, such that:

R[|X(t + 1) − Z| ≤ ε] ≥ exp

{
− c5

T(t + 1)

}
.

Therefore,

δt = inf
x,y∈F+

p(t, x, t + 1, y; µ)

= inf
x,y∈F+

lim
ε→0

1
(2ε)n R(|y − z| ≤ ε)

≥ exp

{
− c6

T(t + 1)

}
.

Finally, if we choose c ≥ c6 then T(t) satisfies:

exp

{
− c6

T(t + 1)

}
≥ 1

3 + t
.

It can easily be seen that:

∞∑

s=1

δt+s = ∞ ∀t ≥ 0.


�
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